72 research outputs found

    Mass and angular momentum loss during RLOF in Algols

    Full text link
    We present a set of evolutionary computations for binaries with a B-type primary at birth. Some liberal computations including loss of mass and angular momentum during binary evolution are added to an extensive grid of conservative calculations. Our computations are compared statistically to the observed distributions of orbital periods and mass ratios of Algols. Conservative Roche Lobe Over Flow (RLOF) reproduces the observed distribution of orbital periods decently but fails to explain the observed mass ratios in the range 0.4-1. In order to obtain a better fit the binaries have to lose a significant amount of matter, without transferring too much angular momentum.Comment: 6 pages, 5 figures. to appear in the proceedings of the meeting Massive Stars in Interacting Binaries, eds. N. St.-Louis and T. Moffa

    Blue supergiant progenitor models of Type II supernovae

    Full text link
    In the present paper we show that within all the uncertainties that govern the process of Roche lobe overflow in Case Br type massive binaries, it can not be excluded that a significant fraction of them merge and become single stars. We demonstrate that at least some of them will spend most of their core helium burning phase as hydrogen rich blue stars, populating the massive blue supergiant region and/or the massive Be type star population. The evolutionary simulations let us suspect that these mergers will explode as luminous hydrogen rich stars and it is tempting to link them to at least some super luminous supernovae.Comment: Accepted for publication in A&A; accepted versio

    Spin-up and hot spots can drive mass out of a binary

    Full text link
    The observed distribution of periods and mass ratios of Algols with a B type primary at birth was updated. Conservative evolution fails to produce the large fraction with a high mass ratio: i.e. q in [0.4-0.6]. Interacting binaries thus have to lose mass before or during Algolism. During RLOF mass is transferred continuously from donor to gainer. The gainer spins up; sometimes up to critical velocity. Equatorial material on the gainer is therefore less bound to the system. The material coming from the donor through the first Langrangian point impinges violently on the surface of the gainer or the edge of the accretion disc, creating a hot spot in the area of impact. The sum of rotational energy (fast rotation) and radiative energy (hot spot) depends on the mass-loss rate. The sum of both energies on a test mass located in the impact area equals exactly its binding energy at some critical value. As long as the mass transfer rate is smaller than this value the gainer accepts all the mass coming from the donor: RLOF happens conservatively. But as soon as the critical rate is exceeded the gainer will acquire no more than the critical value and RLOF runs into its liberal era. Low mass binaries never achieve mass-loss rates larger than the critical value. Intermediate mass binaries evolve mainly conservatively but mass will be blown away from the system during the short era of rapid mass transfer soon after RLOF-ignition. Binaries with 9+5.4 solar masses (P in [2-4] d) evolve almost always conservatively. Only during some 20,000 years the gainer is not capable of grasping all the material that comes from the donor. During this short lapse of time a significant fraction of the mass of the system is blown into interstellar space. The mass ratio bin [0.4-0.6] is now much better represented.Comment: 12 pages, 7 figures, accepted for publication in A&A; accepted versio

    Mass loss out of close binaries. II

    Full text link
    Liberal evolution of interacting binaries has been proposed previously by several authors in order to meet various observed binary characteristics better than conservative evolution does. Since Algols are eclipsing binaries the distribution of their orbital periods is precisely known. The distribution of their mass ratios contains however more uncertainties. We try to reproduce these two distributions theoretically using a liberal scenario in which the gainer star can lose mass into interstellar space as a consequence of its rapid rotation and the energy of a hot spot. In a recent paper (Van Rensbergen et al. 2010, A&A) we calculated the liberal evolution of binaries with a B-type primary at birth where mass transfer starts during core hydrogen burning of the donor. In this paper we include the cases where mass transfer starts during hydrogen shell burning and it is our aim to reproduce the observed distributions of the system parameters of Algol-type semi-detached systems. Our calculations reveal the amount of time that an Algol binary lives with a well defined value of mass ratio and orbital period. We use these data to simulate the distribution of mass ratios and orbital periods of Algols. Binaries with a late B-type initial primary hardly lose any mass whereas those with an early B primary evolve in a non-conservative way. Conservative binary evolution predicts only ~ 12 % of Algols with a mass ratio q above 0.4. This value is raised up to ~ 17 % using our scenario of liberal evolution, which is still far below the ~ 45 % that is observed. Observed orbital periods of Algol binaries larger than one day are faithfully reproduced by our liberal scenario. Mass ratios are reproduced better than with conservative evolution, but the resemblance is still poor.Comment: 11 pages, 6 figures, accepted for publication in A&A; accepted versio

    The Evolution of Massive Stars. I. Red Supergiants in the Magellanic Clouds

    Full text link
    We investigate the red supergiant (RSG) content of the SMC and LMC using multi-object spectroscopy on a sample of red stars previously identified by {\it BVR} CCD photometry. We obtained high accuracy (<1<1 km s1^{-1}) radial velocities for 118 red stars seen towards the SMC and 167 red stars seen towards the LMC, confirming most of these (89% and 95%, respectively) as red supergiants (RSGs). Spectral types were also determined for most of these RSGs. We find that the distribution of spectral types is skewed towards earlier type at lower metallicities: the average (median) spectral type is K5-7 I in the SMC, M1 I in the LMC, and M2 I in the Milky Way. We argue that RSGs in the Magellanic Clouds are 100deg (LMC) and 300deg (SMC) cooler than Galactic RSGs of the same spectral type. We compare the distribution of RSGs in the H-R diagram to that of various stellar evolutionary models; we find that none of the models produce RSGs as cool and luminous as what is actually observed. In all of our H-R diagrams, however, there is an elegant sequence of decreasing effective temperatures with increasing luminosities; explaining this will be an important test of future stellar evolutionary models.Comment: Version with eps figures embedded can be obtained from ftp://ftp.lowell.edu/pub/massey/rsgs.ps.gz Accepted by the Astronomical Journa

    Mass loss out of close binaries

    Full text link
    In a liberal evolutionary scenario, mass can escape from a binary during eras of fast mass transfer. We calculate the mass lost by binaries with a B-type primary at birth where mass transfer starts during hydrogen core burning of the donor. We simulate the distribution of mass-ratios and orbital periods for those interacting binaries. The amount of time the binary shows Algol characteristics within different values of mass-ratio and orbital period has been fixed from conservative and liberal evolutionary calculations. We use these data to simulate the distribution of mass-ratios and orbital periods of Algols with the conservative as well as the liberal model. We compare mass-ratios and orbital periods of Algols obtained by conservative evolution with those obtained by our liberal model. Since binaries with a late B-type primary evolve almost conservatively, the overall distribution of mass-ratios will only yield a few Algols more with high mass-ratios than conservative calculations do. Whereas the simulated distribution of orbital periods of Algols fits the observations well, the simulated distribution of mass-ratios produces always too few systems with large values.Comment: 6 pages, 6 figures, accepted for publication in A&A; accepted versio

    Cepheid Mass-loss and the Pulsation -- Evolutionary Mass Discrepancy

    Full text link
    I investigate the discrepancy between the evolution and pulsation masses for Cepheid variables. A number of recent works have proposed that non-canonical mass-loss can account for the mass discrepancy. This mass-loss would be such that a 5Mo star loses approximately 20% of its mass by arriving at the Cepheid instability strip; a 14Mo star, none. Such findings would pose a serious challenge to our understanding of mass-loss. I revisit these results in light of the Padova stellar evolutionary models and find evolutionary masses are (17±517\pm5)% greater than pulsation masses for Cepheids between 5<M/Mo<14. I find that mild internal mixing in the main-sequence progenitor of the Cepheid are able to account for this mass discrepancy.Comment: 15 pages, 3 figures, ApJ accepte

    Tomographic Separation of Composite Spectra. IX. The Massive Close Binary HD 115071

    Get PDF
    We present the first orbital elements for the massive close binary, HD 115071, a double-lined spectroscopic binary in a circular orbit with a period of 2.73135 +/- 0.00003 days. The orbital semiamplitudes indicate a mass ratio of M_2/M_1 = 0.58 +/- 0.02 and yet the stars have similar luminosities. We used a Doppler tomography algorithm to reconstruct the individual component optical spectra, and we applied well known criteria to arrive at classifications of O9.5 V and B0.2 III for the primary and secondary, respectively. We present models of the Hipparcos light curve of the ellipsoidal variations caused by the tidal distortion of the secondary, and the best fit model for a Roche-filling secondary occurs for an inclination of i = 48.7 +/- 2.1 degrees. The resulting masses are 11.6 +/- 1.1 and 6.7 +/- 0.7 solar masses for the primary and secondary, respectively, so that both stars are very overluminous for their mass. The system is one of only a few known semi-detached, Algol-type binaries that contain O-stars. We suggest that the binary has recently emerged from extensive mass transfer (possibly through a delayed contact and common envelope process).Comment: Submitted to Ap

    The N Enrichment and Supernova Ejection of the Runaway Microquasar LS 5039

    Get PDF
    We present an investigation of new optical and ultraviolet spectra of the mass donor star in the massive X-ray binary LS 5039. The optical band spectral line strengths indicate that the atmosphere is N-rich and C-poor, and we classify the stellar spectrum as type ON6.5 V((f)). The N-strong and C-weak pattern is also found in the stellar wind P Cygni lines of N V 1240 and C IV 1550. We suggest that the N-enrichment may result from internal mixing if the O-star was born as a rapid rotator, or the O-star may have accreted N-rich gas prior to a common-envelope interaction with the progenitor of the supernova. We re-evaluated the orbital elements to find an orbital period of P=4.4267 +/- 0.0010 d. We compared the spectral line profiles with new non-LTE, line-blanketed model spectra, from which we derive an effective temperature T_eff = 37.5 +/- 1.7 kK, gravity log g = 4.0 +/- 0.1, and projected rotational velocity V sin i = 140 +/- 8 km/s. We fit the UV, optical, and IR flux distribution using a model spectrum and extinction law with parameters E(B-V)= 1.28 +/- 0.02 and R= 3.18 +/- 0.07. We confirm the co-variability of the observed X-ray flux and stellar wind mass loss rate derived from the H-alpha profile, which supports the wind accretion scenario for the X-ray production in LS 5039. Wind accretion models indicate that the compact companion has a mass M_X/M_sun = 1.4 +/- 0.4, consistent with its identification as a neutron star. The observed eccentricity and runaway velocity of the binary can only be reconciled if the neutron star received a modest kick velocity due to a slight asymmetry in the supernova explosion (during which >5 solar masses was ejected).Comment: 38 pages, 9 figures; 2004, ApJ, 600, Jan. 10 issue, in press Discussion revised thanks to comments from P. Podsiadlowsk

    A New Way to Detect Massive Black Holes in Galaxies: The Stellar Remnants of Tidal Disruption

    Get PDF
    We point out that the tidal disruption of a giant may leave a luminous (10^35-10^39 ergs/s), hot (10-100 eV) stellar core. The ``supersoft'' source detected by Chandra at the center of M31 may be such a core; whether or not it is, the observations have shown that such a core is detectable, even in the center of a galaxy. We therefore explore the range of expected observational signatures and how they may be used to (1) test the hypothesis that the M31 source is a remnant of tidal stripping and (2) discover evidence of black holes and disruption events in other galaxies.Comment: Four pages with 1 figure. Appeared in ApJL (2001, 551, L37
    corecore